TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.



FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll * D
          
X
 [ESTADO QUÂNTICO].


1] Cosmic space.
2] Cosmic and quantum time.
3] Structures.
4] Energy.
5] Phenomena.
6] Potential.
7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
9] thermal specificity, other energies, and structure phenomena, and phase transitions.
10] action time specificity in physical and quantum processes.




Sistema decadimensional Graceli.

1]Espaço cósmico.
2]Tempo cósmico  e quântico.
3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
4]Energias.
5]Fenômenos.
6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
10] especificidade de tempo de ações em processos físicos e quântico.


categorias de Graceli.
tipos, níveis [intensidade], potenciais, tempo de ação.




Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


Estados térmico.
Estado quântico.
De dilatação.
De entropia.
De potencia de entropia e relação com dilatação.
De magnetismo [correntes, momentum e condutividades]..
De eletricidade [correntes, momentum e condutividades].
De condutividade.
De mometum e fluxos variados.
De potencial inercial da matéria e energia.
De transformação.
De comportamento de cargas e interações com elétrons.
De emaranhamentos e transemaranhamentos.
De paridades e transparidades.
De radiação.
Radioatividade.
De radioisótopos.
De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

De resistir à temperaturas.
E transformar em dilatação, interações entre partículas, energias e campos.
Estado dos padrões de variações e efeitos variacionais.
Estado de incerteza dos fenômenos e entre as suas interações.


E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



Em teorias de campos na redecampos de férmions experimentam (pelo menos) uma duplicação no número de tipos de partículas, correspondendo a pólos extras no propagador.

Uma rede é um arranjo periódico de vértices. Se nós aplicarmos uma transformada de Fourier a uma rede, o espaço de momentos é um toro com a forma do domínio fundamental da rede recíproca chamado de zona de Brillouin.

Isto significa que se observarmos as soluções de ondas sobre uma rede, o autovalor do operador de férmions em função do momento (vetor de onda) será periódico.

Para um campo bosônico livre, a ação é quadrática e, por isso, os autovalores tem a forma

,

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

ou a forma similar onde . Para escalas de momento muito maiores que o espaçamento inverso de rede (i.e. para autovalores próximos de zero) somente os momentos em torno de k=0 são dominantes e nós temos uma única espécie de bóson.

Férmions, por outro lado, são descritos por equações de primeira ordem. Então, poderíamos ter algo que será como

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


pelo menos com uma dimensão espacial, sendo os casos dimensionalmente mais altos são análogos. Se nós observarmos o limite inferior dos autovalores, nós veremos duas regiões diferentes; uma sobre k=0 e a outra sobre k=π/L. Eles comportam-se como dois tipos de partículas. Isto é chamado duplicação de férmion e cada espécie de férmion é chamada um gosto (em analogia ao sabor dos quarks).



Um par de Cooper é um par de elétrons que estão ligados de uma certa maneira descrita pela primeira vez por Leon Cooper. Cooper mostrou que uma atração pequena arbitrária elétrons em um metal pode causar um estado de paridade de elétrons que tenham uma energia menor do que a energia de Fermi, o qual implica que o par está ligado. Em supercondutores normais, esta atração é causada pela interação elétron-fônon. O estado par de Cooper forma a base da teoria BCS da supercondutividade, desenvolvida por John BardeenJohn Schrieffer e Leon Cooper, pela qual eles dividiram o Prêmio Nobel de 1972.


Uma explicação simplificada

Um elétron em um metal normalmente comporta-se basicamente como uma partícula livre. O elétron é repelido dos outros elétrons devido a sua carga similar, mas isto também atrai os íons positivos de forma que estes íons atraem a outros elétrons (a interação elétron-fônon). Esta atração devida aos íons deslocados pode superar a repulsão dos elétrons tendo a mesma carga, causando seu emparelhamento. Geralmente, o emparelhamento só ocorre a baixas temperaturas e é muito fraco, o que significa que os elétrons emparelhados podem estar a várias centenas de nanômetros uns dos outros.

Cooper originalmente só considerou o caso de um par isolado formado em um metal. Quando se considera o estado mais realista consistindo em muitos elétrons formando parelhas como se faz na completa Teoria BCS, se encontra que o emparelhamento abre uma lacuna no espectro contínuo de estados de energia permitida dos elétrons, o que significa que todas as excitações do sistema devem possuir alguma mínima quantidade de energia. Esta lacuna leva à supercondutividade, já que as pequenas excitações tais como a dispersão de elétrons estão impedidas.

Herbert Fröhlich foi o primeiro a sugerir que os elétrons podem atuar como pares unidos por vibrações na estrutura do material. Isto foi acusado pelo efeito isótopo observado em supercondutores. O efeito isótopo mostrou que os materiais com íons mais pesados tinham menores temperaturas de transição a supercondutor. Isto pode explicar-se muito bem pela teoria dos pares de Cooper: os íons mais pesados são os mais difíceis de mover-se, pelo que seriam menos capazes de atrair elétrons resultando em uma menor energia de união para os pares de Cooper.

O par ainda será um par de Cooper se  


x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


A teoria de Cooper é muito geral e não depende da interação específica elétron-fônon. Especialistas em matéria condensada têm proposto mecanismos de emparelhamento baseados em outras interações atrativas tais como interações elétron-excíton ou elétron-plasmon. Atualmente, nenhuma destas duas últimas interações têm sido observadas em qualquer material.





Denomina-se matéria degenerada, ou ainda gás degenerado, aquela na qual uma fração importante da pressão provém do princípio de exclusão de Pauli, que estabelece que dois férmions não podem ter os mesmos números quânticos.

Tal "gás" não obedece às leis clássicas segundo as quais a pressão de um gás é proporcional à sua temperatura e densidade.

Enrico Fermi e Paul Adrien Maurice Dirac provaram que, a uma densidade muito alta, a pressão aumenta rapidamente até o ponto em que ela passa a independer da temperatura do gás. Neste ponto, o gás passa a agir quase como um sólido.

Na astronomia, este gás é encontrado nas estrelas anãs brancas e é importante no tratamento tanto de estrelas residuais densas quanto das novas que as geram.[1] É conceito importante em cosmologia e na evolução do universo no tempo,[2] com relações com a teoria da relatividade[3] e para o modelo "big bang" e na detecção de objetos estelares.[4]

Dependendo das condições, a degeneração de diferentes partículas pode contribuir com a pressão de um objeto compacto, de modo que uma anã branca está sustentada pela degeneração dos elétrons, ainda que uma estrela de nêutrons não colapse devido ao efeito combinado da pressão de nêutrons degenerados e da pressão devida à ação repulsiva da interação forte entre bárions.

Estas restrições nos estados quânticos fazem com que as partículas adquiram momentos muito elevados, já que não têm outras posições do espaço de fases onde situar-se; pode-se dizer que o gás, ao não poder ocupar mais posições, se vê obrigado a estender-se no espaço de momentos com a limitação da velocidade c (velocidade da luz). Assim, ao estar tão comprimida a matéria, os estados energeticamente baixos preenchem-se em seguida, pelo que muitas partículas não têm outra possibilidade senão colocar-se em estados muito energéticos, o que envolve uma pressão adicional de origem quântica. Se a matéria está suficientemente degenerada, esta citada pressão será dominante, e muito, sobre todas as demais contribuições. Esta pressão é, além disto, independente da temperatura e unicamente dependente da densidade.

Estas características implicam tratamento termodinâmico bastante diverso e adequado às pressões e campos gravitacionais envolvidos[5], assim como o comportamento das reações nucleares na proximidade de tais massas.[6][7]

Necessita-se de densidades para chegar aos estados de degeneração da matéria. Para a degeneração de elétrons se requer uma densidade em torno dos 106 g/cm³, para a de nêutrons necessita-se muito mais ainda, 1014 g/cm³.



Tratamento matemático da degeneração

Para calcular o número de partículas fermiônicas em função de seu momento, se usará a distribuição de Fermi-Dirac (ver estatística de Fermi-Dirac) da seguinte maneira:


x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde n(p) é o número de partículas com momento linear p. O coeficiente inicial 2 é a dupla degeneração de spin dos férmions. A primeira fração é o volume do espaço de fases em um diferencial de momentos dividido pelo volume de uma determinada seção no espaço. A h³ é a constante de Planck ao cubo que, como se tem dito, significa o volume dessas seções nas quais cabem até duas partículas com spins opostos. O último termo fracionário é o denominado fator de preenchimentoK é a constante de BoltzmannT a temperatura, Ep a energia cinética de uma partícula com momento p e ψ o parâmetro de degeneração, que é dependente da densidade e da temperatura.

  • fator de preenchimento indica a probabilidade de este preencher um estado. Seu valor está compreendido entre 0 (todos vazios) e 1 (todos preenchidos).
  • parâmetro de degeneração indica o grau de degeneração das partículas. Se toma valores grandes e negativos a matéria estará em um regime de gás ideal. Se está próximo a 0 a degeneração se começa a notar. Diz-se que o material está parcialmente degenerado. Se o valor é grande e positivo o material está altamente degenerado. Isto acontece quando as densidades são elevadas ou também quando as temperaturas são baixas.

Desta equação se podem deduzir as integrais do número de partículas, a pressão que exercem e a energia que têm. Estas integrais são possíveis de serem resolvidas analiticamente quando a degeneração é completa.

x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


O valor da energia das partículas dependerá da velocidade das partículas, a qual decidirá se se tem-se um gás relativista ou não. No primeiro caso se usarão as equações de Einstein e no segundo valerá a aproximação clássica. Como se pode ver, as relações energia-pressão variam significativamente, sendo maiores as pressões obtidas com a degeneração completa não relativista. É lógico, já que a matéria relativista é mais quente.

  • Matéria degenerada não relativista (NR)
  • x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


  • Matéria degenerada extremamente relativista (ER)
  • x

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS

As estrelas típicas com degeneração são as anãs brancas e as anãs marrons sustentadas por elétrons e as estrelas de nêutrons sustentadas por nêutrons degenerados. Considera-se que sua temperatura tende a 0, já que não possuem fonte de calor alguma. Suporemos estes corpos com um parâmetro de degeneração tendente a +infinito.


Comentários

Postagens mais visitadas deste blog