TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI
TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA. [EQUAÇÃO DE DIRAC].
+ FUNÇÃO DE RADIOATIVIDADE
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ ENTROPIA REVERSÍVEL
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
ENERGIA DE PLANCK
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG
XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
x
sistema de dez dimensões de Graceli + DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..
- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia - TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG l
N l El tf l P l Ml tfefel Ta l Rl Ll * D
X [ESTADO QUÂNTICO].
Na mecânica analítica e a teoria do campo quântico, o acoplamento mínimo refere-se a um acoplamento entre os campos que envolve apenas a carga de distribuição e não mais multipolar momentos da distribuição de carga. Esse acoplamento mínimo está em contraste com, por exemplo, acoplamento de Pauli, o que inclui o momento magnético de um elétron diretamente no Lagrangiano.
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
+ FUNÇÃO TÉRMICA.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
- X
- CATEGORIAS DE GRACELI
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl * D
Na mecânica analítica e a teoria do campo quântico, o acoplamento mínimo refere-se a um acoplamento entre os campos que envolve apenas a carga de distribuição e não mais multipolar momentos da distribuição de carga. Esse acoplamento mínimo está em contraste com, por exemplo, acoplamento de Pauli, o que inclui o momento magnético de um elétron diretamente no Lagrangiano.
Eletrodinâmica
Na eletrodinâmica, o acoplamento mínimo é adequado para considerar todas as interações eletromagnéticas. Momentos mais altos de partículas são conseqüências do acoplamento mínimo e o spin diferente de zero.
Matematicamente, o acoplamento mínimo é obtido subtraindo a charge () vezes o quadripotencial () do quadrimomento () no Lagrangiano ou Hamiltoniano:
- X
Na eletrodinâmica, o acoplamento mínimo é adequado para considerar todas as interações eletromagnéticas. Momentos mais altos de partículas são conseqüências do acoplamento mínimo e o spin diferente de zero.
Matematicamente, o acoplamento mínimo é obtido subtraindo a charge () vezes o quadripotencial () do quadrimomento () no Lagrangiano ou Hamiltoniano:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Veja o artigo de mecânica hamiltoniana para obter uma derivação completa e exemplos. (Retirado quase literalmente da Interacção Lagrangeana de Doughty, pg. 456)[1]
Veja o artigo de mecânica hamiltoniana para obter uma derivação completa e exemplos. (Retirado quase literalmente da Interacção Lagrangeana de Doughty, pg. 456)[1]
Inflação
Em estudos de inflação cosmológica, o acoplamento mínimo de um campo escalar, geralmente, refere-se a um acoplamento mínimo para a gravidade. Isso significa que a ação para o campo inflaton não está acoplado ao escalar de curvatura. Somente o seu acoplamento a gravidade é o acoplamento com o invariante de Lorentz medida construído a partir da métrica (em unidades de Planck):
- X
Em estudos de inflação cosmológica, o acoplamento mínimo de um campo escalar, geralmente, refere-se a um acoplamento mínimo para a gravidade. Isso significa que a ação para o campo inflaton não está acoplado ao escalar de curvatura. Somente o seu acoplamento a gravidade é o acoplamento com o invariante de Lorentz medida construído a partir da métrica (em unidades de Planck):
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde , e utilizando o derivativo de calibre covariante.[2][3][4]
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.
Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original.
Mais precisamente, nós temos um retículo com vértices, grafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é
- X
onde , e utilizando o derivativo de calibre covariante.[2][3][4]
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.
Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original.
Mais precisamente, nós temos um retículo com vértices, grafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.
Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".
Para calcular uma grandeza (tal como a massa de uma partícula) em teoria de retículo gauge, ela deve ser calculada para cada valor possível do campo gauge sobre cada ligação, e então calculada sua média. Na prática isto é impossível. Em vez disso o método de Monte Carlo é usado para estimar a grandeza. Configurações aleatórias (valores de campos gauge) são geradas com probabilidades proporcionais a , onde é a ação de retículo para que a configuração e seja relacionada ao espaçamento do retículo . A grandeza é calculada para cada configuração. O verdadeiro valor da grandeza é então encontrado por tomar-se a média do valor de um grande número de configurações. Para encontrar o valor da grandeza na teoria contínua isto é repetido para vários valores de e extrapolados a .
Teoria do retículo gauge é uma ferramenta importante para cromodinâmica quântica (QCD). A versão discreta da QCD é chamada retículo QCD. O confinamento QCD tem sido apresentado em simulações de Monte Carlo. Confinamento a alta temperatura conduz à formação de um plasma de quarks-glúons.
Teoria do retículo gauge tem-se mostrado exatamente duplas de espuma de spin desde que somente laços de Wilson apareçam na ação sobre plaquetas.
Na física, espaço-tempo é o sistema de coordenadas utilizado como base para o estudo da relatividade restrita e relatividade geral. O tempo e o espaço tridimensional são concebidos, em conjunto, como uma única variedade de quatro dimensões a que se dá o nome de espaço-tempo. Um ponto, no espaço-tempo, pode ser designado como um "acontecimento". Cada acontecimento tem quatro coordenadas (t, x, y, z); ou, em coordenadas angulares, t, r, θ, e φ que dizem o local e a hora em que ele ocorreu, ocorre ou ocorrerá.[1]
Na mecânica clássica (não-relativista), o tempo é tomado como uma unidade de medida universal, uniforme por todo o espaço, e independente de qualquer movimentação nesse, enquanto que no contexto da relatividade especial, o tempo é tratado integralmente à dimensão espacial, pois a taxa observada da passagem do tempo depende da velocidade do objeto em relação ao seu observador.[2][3]
Pontos no espaço-tempo são chamados de eventos e são definidos por quatro números, por exemplo, (x, y, z, ct), onde c é a velocidade da luz e pode ser considerado como a velocidade que um observador se move no tempo. Isto é, eventos separados no tempo de apenas 1 segundo estão a 299 792 458 metros um do outro no espaço-tempo. Assim como utilizamos as coordenadas x, y e z para definir pontos no espaço em 3 dimensões, na relatividade especial utilizamos uma coordenada a mais para definir o tempo de acontecimento de um evento.
(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.
Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".
Para calcular uma grandeza (tal como a massa de uma partícula) em teoria de retículo gauge, ela deve ser calculada para cada valor possível do campo gauge sobre cada ligação, e então calculada sua média. Na prática isto é impossível. Em vez disso o método de Monte Carlo é usado para estimar a grandeza. Configurações aleatórias (valores de campos gauge) são geradas com probabilidades proporcionais a , onde é a ação de retículo para que a configuração e seja relacionada ao espaçamento do retículo . A grandeza é calculada para cada configuração. O verdadeiro valor da grandeza é então encontrado por tomar-se a média do valor de um grande número de configurações. Para encontrar o valor da grandeza na teoria contínua isto é repetido para vários valores de e extrapolados a .
Teoria do retículo gauge é uma ferramenta importante para cromodinâmica quântica (QCD). A versão discreta da QCD é chamada retículo QCD. O confinamento QCD tem sido apresentado em simulações de Monte Carlo. Confinamento a alta temperatura conduz à formação de um plasma de quarks-glúons.
Teoria do retículo gauge tem-se mostrado exatamente duplas de espuma de spin desde que somente laços de Wilson apareçam na ação sobre plaquetas.
Na física, espaço-tempo é o sistema de coordenadas utilizado como base para o estudo da relatividade restrita e relatividade geral. O tempo e o espaço tridimensional são concebidos, em conjunto, como uma única variedade de quatro dimensões a que se dá o nome de espaço-tempo. Um ponto, no espaço-tempo, pode ser designado como um "acontecimento". Cada acontecimento tem quatro coordenadas (t, x, y, z); ou, em coordenadas angulares, t, r, θ, e φ que dizem o local e a hora em que ele ocorreu, ocorre ou ocorrerá.[1]
Na mecânica clássica (não-relativista), o tempo é tomado como uma unidade de medida universal, uniforme por todo o espaço, e independente de qualquer movimentação nesse, enquanto que no contexto da relatividade especial, o tempo é tratado integralmente à dimensão espacial, pois a taxa observada da passagem do tempo depende da velocidade do objeto em relação ao seu observador.[2][3]
Pontos no espaço-tempo são chamados de eventos e são definidos por quatro números, por exemplo, (x, y, z, ct), onde c é a velocidade da luz e pode ser considerado como a velocidade que um observador se move no tempo. Isto é, eventos separados no tempo de apenas 1 segundo estão a 299 792 458 metros um do outro no espaço-tempo. Assim como utilizamos as coordenadas x, y e z para definir pontos no espaço em 3 dimensões, na relatividade especial utilizamos uma coordenada a mais para definir o tempo de acontecimento de um evento.
Conceito
Enquanto que na mecânica clássica não-relativista de Isaac Newton o tempo é tomado como uma unidade de medida universal, uniforme por todo o espaço, e independente de qualquer movimentação nesse, no contexto da relatividade especial de Albert Einstein o tempo é tratado como uma dimensão adicional às três dimensões espaciais, não podendo ser separado dessas, pois a taxa de passagem do tempo observada para um determinado objeto depende de sua velocidade em relação à velocidade do observador.[4][3]
Da mesma forma que em geometria em três dimensões, os valores para as coordenadas x, y, z e t dependem do sistema de coordenadas escolhido, e isso inclui escolher a direção do eixo de tempo. Isso porque dois observadores em sistemas de referência em movimento possuem eixos de tempo em direções diferentes. O que para um observador em repouso em um dos referenciais é apenas direção temporal, para o outro em movimento relativo é uma mistura de espaço e de tempo. Esse é um dos pontos fundamentais da relatividade especial. No entanto, essa mistura não é percebida no dia a dia devido à escala de velocidades a que estamos acostumados. Da transformação de Lorentz, as coordenadas de um sistema em movimento com velocidade v na direção do eixo x de um outro referencial são dadas por:
- X
Enquanto que na mecânica clássica não-relativista de Isaac Newton o tempo é tomado como uma unidade de medida universal, uniforme por todo o espaço, e independente de qualquer movimentação nesse, no contexto da relatividade especial de Albert Einstein o tempo é tratado como uma dimensão adicional às três dimensões espaciais, não podendo ser separado dessas, pois a taxa de passagem do tempo observada para um determinado objeto depende de sua velocidade em relação à velocidade do observador.[4][3]
Da mesma forma que em geometria em três dimensões, os valores para as coordenadas x, y, z e t dependem do sistema de coordenadas escolhido, e isso inclui escolher a direção do eixo de tempo. Isso porque dois observadores em sistemas de referência em movimento possuem eixos de tempo em direções diferentes. O que para um observador em repouso em um dos referenciais é apenas direção temporal, para o outro em movimento relativo é uma mistura de espaço e de tempo. Esse é um dos pontos fundamentais da relatividade especial. No entanto, essa mistura não é percebida no dia a dia devido à escala de velocidades a que estamos acostumados. Da transformação de Lorentz, as coordenadas de um sistema em movimento com velocidade v na direção do eixo x de um outro referencial são dadas por:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Onde:
- X
Onde:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
é chamado de fator de Lorentz. Este fator, mesmo para uma velocidade extremamente alta para o nosso padrão diário, como uma velocidade de aproximadamente 16 000 m/s, ou 57 600 km/h, que é a velocidade média da Voyager, um dos objetos mais rápidos construídos pelo homem [1], seria de :
X
é chamado de fator de Lorentz. Este fator, mesmo para uma velocidade extremamente alta para o nosso padrão diário, como uma velocidade de aproximadamente 16 000 m/s, ou 57 600 km/h, que é a velocidade média da Voyager, um dos objetos mais rápidos construídos pelo homem [1], seria de :
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
E o fator de mistura entre tempo e espaço na transformação de Lorentz (o termo que multiplica x na coordenada de tempo do sistema em movimento, dado acima) seria de :
- X
E o fator de mistura entre tempo e espaço na transformação de Lorentz (o termo que multiplica x na coordenada de tempo do sistema em movimento, dado acima) seria de :
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Portanto, o fator adicionado à coordenada de tempo é praticamente zero. Nas velocidades às quais estamos habituados no dia a dia, a diferença entre espaço-tempo e um espaço de três dimensões parametrizado pelo tempo é irrelevante. Mas não para outros ambientes no universo, ou mesmo em laboratórios de física de partículas.
Portanto, o fator adicionado à coordenada de tempo é praticamente zero. Nas velocidades às quais estamos habituados no dia a dia, a diferença entre espaço-tempo e um espaço de três dimensões parametrizado pelo tempo é irrelevante. Mas não para outros ambientes no universo, ou mesmo em laboratórios de física de partículas.
Dispersão de Møller é o nome dado para a dispersão de elétron-elétron na Teoria do Campo Quântico, em homenagem ao físico dinamarquês Christian Møller. A interação de elétron que é idealizada na dispersão de Møller constitui a base teórica de muitos fenômenos familiares, tais como a repulsão dos elétrons no átomo de hélio. Enquanto antigamente muitos aceleradores de partículas foram concebidos especificamente para colisões de elétron-elétron , mais recentemente aceleradores de elétron-positrão têm se tornado mais comuns. No entanto, a dispersão de Møller continua a ser um processo paradigmático dentro da teoria das interações entre partículas.
Podemos expressar este processo na notação usual, freqüentemente usado na física de partículas:
- ,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
Em eletrodinâmica quântica, há dois diagramas de Feynman de árvore de nível, descrevendo o processo: um diagrama t-canal em que os elétrons trocam um fóton e um semelhante diagrama u-canal. Cruzamento de simetria, um dos truques usados frequentemente para avaliar os diagramas de Feynman, neste caso, implica que a dispersão de Møller deve ter a mesma seção transversal, conforme a dispersão de Bhabha (elétron-positrão dispersão).
Na teoria de força eletrofraca o processo em vez disso, é descrito por quatro diagramas árvores de nível: os dois da QED e um par idêntico em que um bóson Z é trocado em vez de um fóton. A força fraca é puramente canhota, mas as forças fraca e eletromagnética forçam a mistura das partículas que observamos. O foton é simétrico, por construção, mas o bóson Z preferepartículas canhotas ao invés das partículas da mão direita. Assim, as seções transversais para os elétrons canhotos e elétrons com a mão direita diferenciam. A diferença foi observado pela primeira vez pelo físico russo Yakov Zel'dovich em 1959, mas na época, ele acreditava que a paridade violando a assimetria (algumas centenas de partes por bilhão) era muito pequena para serem observadas. Esta paridade violando a assimetria pode ser medida pelo disparo polarizado de feixes de elétrons através de um elétron-alvo não polarizado (hidrogênio líquido, por exemplo), como foi feito por uma experiência no Centro de Aceleração Linear de Stanford, SLAC-E158.[1] A assimetria na dispersão de Møller é
- ,
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI. E DE ESTADOS TRANSICIONAIS
onde me é a massa de elétrons, E a energia do elétron de entrada (no referencial do outro elétron), é a constante de Fermi, é a constante de estrutura fina, é o ângulo de dispersão no centro do quadro de massa e é o ângulo de mistura fraco, também conhecido como o ângulo de Weinberg.
Comentários
Postar um comentário